

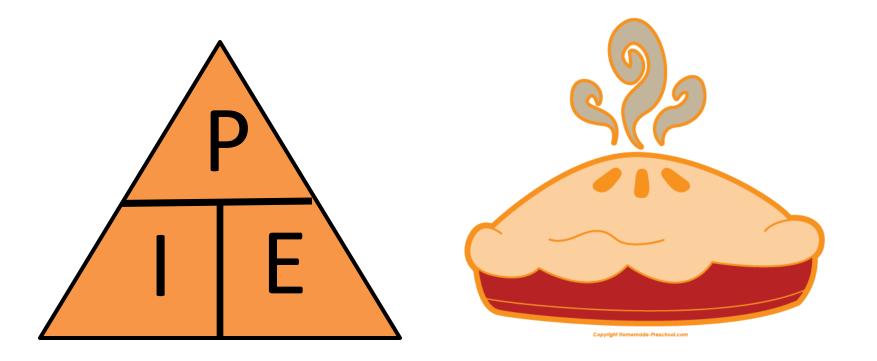
RV Solar 101

Should I invest in Solar?

Purpose of Solar

- Charge one or more batteries with power from the sun
- Minimize or eliminate generator noise and fuel consumption for charging batteries
- Keep batteries maintained while in storage

How Do I get Started?


- What type of battery bank do I need?
- How do I determine the daily consumption from my batteries?
- Will I be using an Inverter? If so, what kind and how do I hook it up?
- How much solar power do I need to recharge my batteries?
- What kind of equipment do I need?
- Portable panels or roof mounted?
 - How do I get the wires from the roof to the batteries?
- Where can I turn to for help?

Basic Electronics

• P=IE

• Power = Current x Voltage

Power (P): Watts Current (I): Amps Voltage (E): Volts

Step 1 – Power Requirements

How much Battery Power do I need?

How Much Battery Power Do I Need?

12 Volt Syste	m
Aisle Lights	1.0 amps
Baggage Compartment Lights	1.4 amps
Decorative Wall Lights	1.5 amps
Dinette Light	4.5 amps
Exterior Entertainment Center	5-7 amps
Fantastic Fan	1.5 amps
Fluorescent Double Lights - 12"	2.0 amps
Fluorescent Double Lights - 18"	2.5 amps
Furnace	12.0 amps
Generator Start	95.0 amps *
Halogen Light	1.7 amps
Illuminated Switch	.125 amps
Inverter	Variable
Leveling System	95.0 amps *
LP Detector	.125 amps
Map Light	1.5 amps
Porch Light	1.5 amps
Power Awning	10.0 amps
Power Vent	5.0 amps
Refrigerator	3.0 amps
Shower Light	1.4 amps
Step Cover	10.0 amps
TV Plate / Antenna Booster	1.0 amps
Vanity Light	4.2 amps
Water Heater	6.0 amps
Water Pump	7.0 amps

120 Volt Syste	em
Air Conditioner	18 amps
Coffee Maker	6-12 amps
Converter (Each)	8 amps
Curling Iron or Hair Dryer	10-14 amps
Blu-Ray/DVD System	3 amps
Microwave	12 amps
Refrigerator	6 amps
Satellite Receiver	2 amps
TV	2-4 amps
Vacuum Cleaner	8 amps
Washer / Dryer	12 amps
Water Heater	12 amps

When running 120V devices from an inverter you are drawing 10 times the current from your batteries. So a 3-amp television will be pulling 30Amps from your batteries every hour! A single 100Ah Lithium battery could be depleted in about 3 hours!

Source: GDRV Reflection TT Owners Manual

Battery Monitor A Better Way To Determine Your Needs

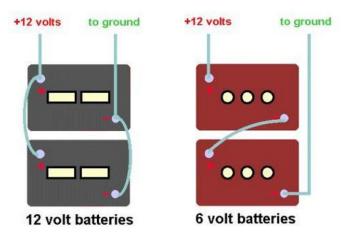
Monitor Display

Shunt Installed in 2017 297RSTS Reflection TT

Battery Monitor My Data

Step 2 – Power Requirements

What type of batteries do I need for power? How do I install them?


Six Volt vs. 12 Volt Battery Banks

6 Volts

- Requires batteries to be installed in pairs
- Connect in series Voltage increases, current capacity unchanged.
- Primary benefit Deep cycle golf cart style batteries typically have higher current capacity (measured in amp hours (Ah) than 12V)
- Drawbacks Very heavy

12 Volts

- Connect in parallel current increases, voltage unchanged.
- Primary benefit If one battery fails, it can be taken out of the bank.
- Drawbacks An equal number of 12V batteries typically have less current capacity when compared to 6V batteries.

Lead Acid Batteries

- Very Low Cost Approximately \$90-\$120 each.
- You should only use 50% of the battery's capacity.
- A 90 Ah lead/acid battery will provide 45 Ah of useable power.
- Heavy A 12V RV/Marine battery weights approximately 51 pounds (group 27)
- Typically have a 12 month warranty.
- Can leak. Must be vented. Maintenance required.

	≃ CHARGE STATE	VOLTAGE
Note that these voltages	100	>12.6
are approximate and are influenced by	90	12.5
temperature etc. Batteries just taken off charge will have a significantly higher voltage until the 'surface	80	12.4
	70	12.3
	60	12.2
charge decays over 30mins or so.	50	12.1
Repeated discharge to	40	11.9
these levels will shorten battery life	30	11.8
	20	11.6
Permanent Damage will	10	11.3
occur	0	10.5

Absorbent Glass Mat (AGM) Batteries

- Higher initial cost vs. lead acid. \$250-\$350 each.
- A 100 amp hour AGM battery will provide 50-80 amp hours of useable power.
- Spill proof. Rarely vents hydrogen gas.
- 70 pounds (Group 27)
- Warranted for 1-2 years.
- Maintenance Free

AGM BATTERY STATE OF CHARGE		
Level	Voltage	
100%	13.00V	
90%	12.75V	
80%	12.50V	
70%	12.30V	
60%	12.15V	
50%	12.05V	
40%	11.95V	
30%	11.81V	
20%	11.66V	
10%	11.51V	
0%	10.50V	

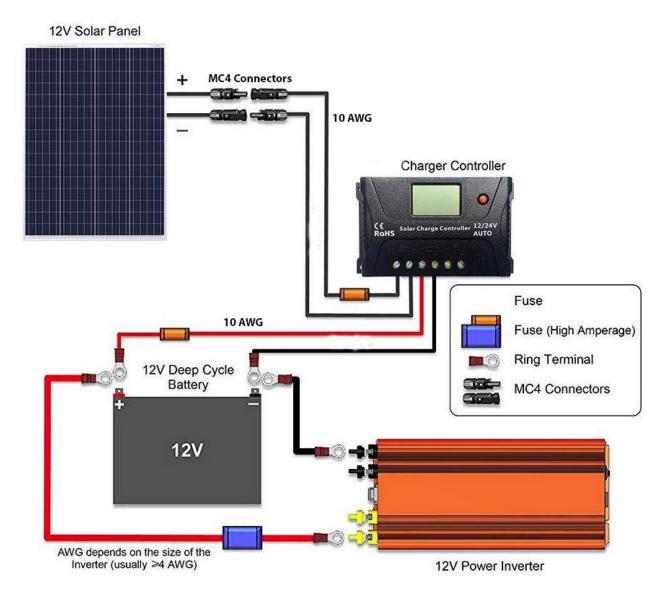
Lithium Iron Phosphate (LiFePo4) Batteries

- Highest Initial Cost (\$900-\$950)
- Very safe. No venting required.
- A 100-amp hour LiFePo4 battery will provide 98-102Ah of useable power.
- 3000-5000 full cycles ten-year warranty (Battle Born)
- 29 pounds
- Maintenance Free
- Internal Battery Monitoring System
- Charges very fast Approximately 50% of the time of lead/acid or AGM

Step 3 – Solar Charging

Now that I've built my battery bank, how Much solar power do I need to charge it?

How Much Solar Charging Do I Need?


- The primary purpose of solar charging is to bring batteries up to a fully charged state.
- Number of panels depends on:
 - Solar angle of incidence (panels flat or tilt mounted)
 - How many hours of daylight.
 - Cloud cover
 - Tree shading
 - Panel construction bypass diodes?
 - Latitude

Rule of Thumb

One 100-Watt panel will provide 30 amps of charging per day

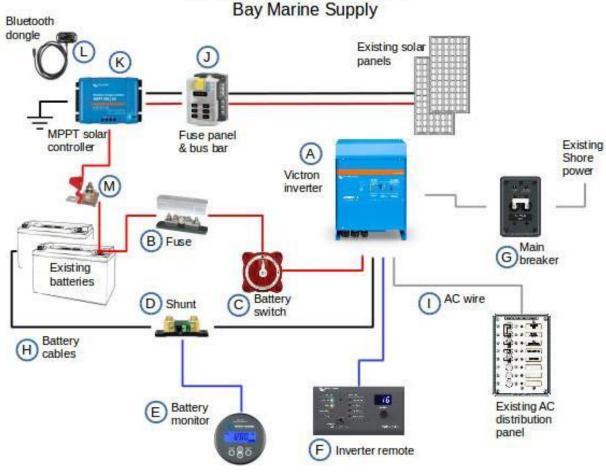

Using the "rule of thumb", my needs are 149aH/30 = 5 (100-Watt) panels.

Diagram of a Basic Solar Charging System

Diagram of a More Complex System

Victron Inverter Complete System Kit with Solar Controller

Step 4 – Installation

How do I install my solar charging system?

Panel Mounting

Grand Design uses a plywood roofing material. Panel brackets can be screwed through the roofing material and into the plywood for a secure mount. Be sure to seal any roof penetrations.

Tiltable Panel Mounts

Helpful in Winter Can be raised for cleaning the roof.

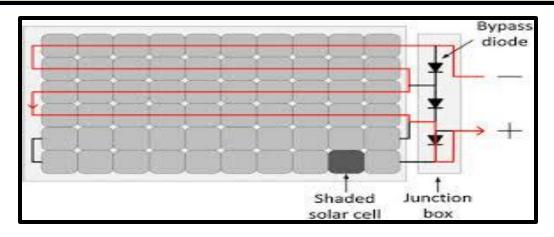
Panel Z Brackets

Series or Parallel

Series Connection – High voltage, low current

Primary Benefit: Since the current is low, and the voltage is high, smaller wires

can be used. Typical wiring is 10ga solar wire with MC4 connectors.

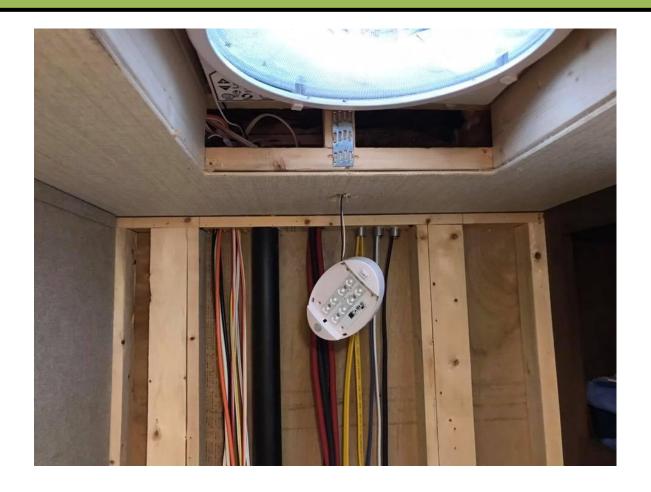

Main Drawback: Any shading or panel failure can result in shut down of the

array! (Solution: Bypass diodes)

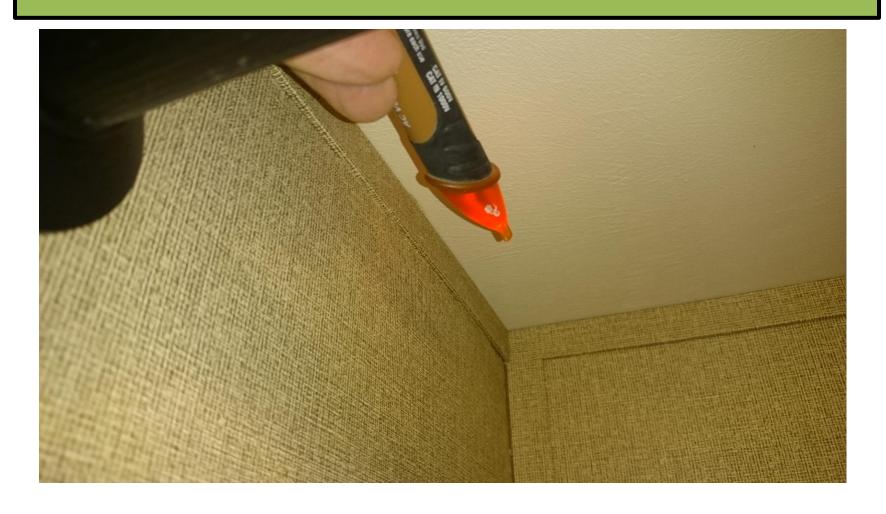
Parallel Connection – High Current, Low voltage

Primary Benefit: Shaded panels will not shut down the array.

Main Drawback: Larger wire sizes.


Roof Penetration

- Some models of Solitudes and Momentums have a wire passageway for solar wiring.
- Grand Design runs many 120V and 12V wires in the roof. Drilling through the roof may cut wires. Use extreme caution.
- Some owners have run their wiring through vent pipes. This method will work, but is technically a violation of the building code that RVs are certified to. (No penetration of vent pipes is allowed)
- Penetrations should be minimized. If using parallel connections, join wires together
 with branch connectors or a combiner box on the roof, then run one positive and one
 negative through the roof.
- A solar entry gland should be used to make a weather-proof connection though the roof.



Roof Penetration (Direct Access)

Brian Rowley removed the bathroom wall in his 337 to safely install solar wires.

Roof Penetration (Drilling)

Check for 120V wiring with a proximity voltage tester before drilling

Roof Penetration (Drilling)

Drill a very small pilot hole, then probe the space before finish drilling

Step 5 – Controls

How do I safely control the solar generated voltage going to the battery?

Solar Controller PWM (Pulse Width Modulation)

PWM - PROs

- Durable, mostly available with passive heat sink style cooling
- A tried and tested solar controller which has been used for years
- Relatively inexpensive, depending on the voltage and current required
- Available in a range of voltage ranges like 12, 24 and 48V with current range of 5-60A
- Simple to install, operate and maintain

PWM - CONs

- To use a PWM controller on the solar system, the solar input nominal voltage must match the battery bank nominal voltage
- PWM is not available over 60A
- System growth is often limited
- Greater efficiency loss when batteries are at a low voltage

You must use a charge controller. Your batteries will be damaged if you don't!

Solar Controller

MPPT (Maximum Power Point Tracking)

MPPT - PROs

- Can increase charging efficiency by up to 30%
- Can be used on solar systems with a higher input voltage than the battery bank
- Available up to 80A
- Generally has a longer warranty than a PWM controller
- Greater flexibility allows for solar system expansion
- Input voltage is not restricted by the battery or system voltage
- Most come standard with reporting and alarm functions

MPPT - CONs

- More expensive than a PWM controller
- Generally larger in physical size
- Greater complexity with more expertise required by the installer to install and commission the controller

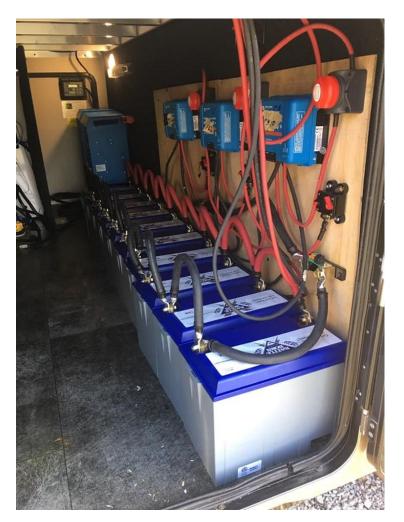
You must use a charge controller. Your batteries will be damaged if you don't!

Example Systems

Many approaches to achieve the same goal: Charge the batteries with power from the sun.

Portable Systems for Charging 1-2 batteries

95-Watt Furrion Panel Connects to input port \$499


100-Watt HQST Panel Connects to input port with adapter \$189.99

Moderate Systems

Complex Systems

Doug Meyers

Joey Carson

Other Equipment

Inverters
Converters
Inverter Chargers
Pig Tails
Transfer Switches

Inverters

An Inverter is required to convert 12V direct current to 120V Alternating Current

- The owner needs to understand their power needs.
- Power can vary from 100 Watts to 3,000 Watts.
- Modified Sine Wave vs. Pure Sine Wave
 - Pure sine wave is required for sensitive components.
- Inverter chargers with internal transfer switches are available.

Inverter Connections

Simple to Complex

- Direct Plug In
- Dedicated Outlet
- Connect to RV Power Inlet (Converter must be turned off)
- Transfer Switch (Converter must be turned off or wired out of the circuit when the inverter is energized)

Do NOT energize the converter via the inverter – Bad things happen!

Resources

Grand Design Technical Forum – GDRVOwners.com

Facebook: Solar-Powered Grand Design (Must be a GDRV Owner)

Grand Design Technical Forum – GDRVOwners.com

Windy Nation: Windynation.com

Lithium Batteries: Battlebornbatteries.com

Victron Electronic Components: Victronenergy.com

Terminology

- Solar Panel Silicon cells convert solar photons into electrons
- Battery Bank One or more batteries used to supply RV electrical needs
- Converter/charger Converts 120V Alternating Current (VAC) to 12V Direct Current (VDC).
- Inverter Converts battery power into 120VAC.
- Fuse Block Provides protection for the various electrical components.
- Transfer Switch Switches from one power source to another. E.G. From shore power to generator or inverter power.
- Generator Gasoline or propane powered device to provide 120VAC.
- Solar Controller An electronic device that regulates the flow of energy into the battery.
- Shunt Device connected to negative battery terminal to measure current consumption.
- Amp Hours Number of amps consumed in one hour. Example: 15 amp hours means 15 amps were used in one hour.

Conclusion

Purpose of Solar

- This presentation should have given you information about:
 - Determining your battery usage
 - Sizing your battery bank
 - Determining how many Panels you'll need
 - How to hook them up, including running the wires.
 - What kind of equipment you'll need
 - Where to find information
 - Can I install a solar charging system myself?
 - Where to turn to for help